\(v_{śr} = \frac{s_c}{t_c}\)
\( s \) = \( v \cdot t \)
\( s \) = \( v_0 \cdot t + \frac{1}{2} \cdot a \cdot t^2 \)
\( a \) = \( \frac{\Delta v}{\Delta t} = \frac{{(v_k - v_0)^2}}{{2s}}\)
\(s_h = \frac{v^2}{2a}\ = \frac{v^2}{2gμ}\), \(t_h = \frac{v}{a}\) = \(\frac{v}{gμ}\)
\(z = v_0 \cdot \sqrt{\frac{2h}{g}}\)
\(z = \frac{v_0^2 \cdot \sin(2\alpha)}{g}\), \( z = v_0 \cdot \cos(\alpha) \left[\frac{v_0 \cdot \sin(\alpha)}{g} + \sqrt{\frac{2 \cdot \left(h_0 + v_0^2 \cdot \frac{\sin^2(\alpha)}{2g}\right)}{g}}\right] \)
\( a_d \) = \( \frac{v^2}{r} \)
\(p = F \cdot t = m \cdot a \cdot t = m \cdot v\)
\( a = \frac{\sum F}{\sum m} \)
\(v_k = \sqrt{2 \cdot g \cdot h}\), z tarciem: \(v_k = \sqrt{2gh \cdot \left(1 - \frac{\mu}{\tan(\alpha)}\right)}\)
\( h \) = \( \frac{v_o^2}{2g} \), z tarciem: \(h = \frac{V_0^2}{2g\left(\frac{\mu}{\tan(\theta)} + 1\right)}\)
\( M = F \cdot d \cdot \cos(\alpha) \)
\(L = I \cdot \omega\)
\(a = \frac{g \cdot \sin(\alpha)}{1 + \frac{I}{mR^2}}\)
\(v = \sqrt{\frac{2 \cdot g \cdot (h_p - h_k)}{1 + \frac{I}{mR^2}}}\)
\(E_m = E_k + E_p = \frac{1}{2}mv^2 + mgh\)
\(E_k = \frac{1}{2}mv^2\)
\(E_p = mgh\)
\(H = \frac{v_0^2 \cdot \sin^2(\alpha)}{2g}\)
\(W = F \cdot d \cdot \cos(\alpha)\)
\(F_g = \frac{G \cdot m_1 \cdot m_2}{r^2}\)
\( a_g \) = \( \frac{{G \cdot M}}{{r^2}} \)
\(v_1 = \sqrt{\frac{G \cdot M}{R}}\)
\(v_2 = \sqrt{\frac{2 \cdot G \cdot M}{R}}\)
\(\frac{{T^2}}{{R^3}} = \text{const}\)
\( p = \frac{P}{S} = \rho \cdot g \cdot h \)
\( P = p \cdot S = \rho g h S = \rho g V \)
\( \frac{{F_1}}{{S_1}} = \frac{{F_2}}{{S_2}} \)
\( F_A = \rho_c \cdot g \cdot V_z \)
\( \Delta U = Q - W \)
\( PV = nRT \)
\( \frac{dP}{dT} = \frac{L}{T(V_2 - V_1)} \)
\( \Delta S = \frac{Q_{rev}}{T} \)
\( \eta = 1 - \frac{T_C}{T_H} \)
\( W = P \Delta V \)
\( \langle E_k \rangle = \frac{3}{2} k_B T \)